

Frank S. Marzano, J. Weinman and A. Mugnai

Dipartimento di Ingegneria Elettronica - Univ. "La Sapienza" di Roma, Italy Tel.: 06-44585406 E-mail: marzano@die.uniroma1.it Dept. of Meteorology, Univ. di Washington, Seattle, WA ISAC - CNR, Roma, Italy

MOTIVATION

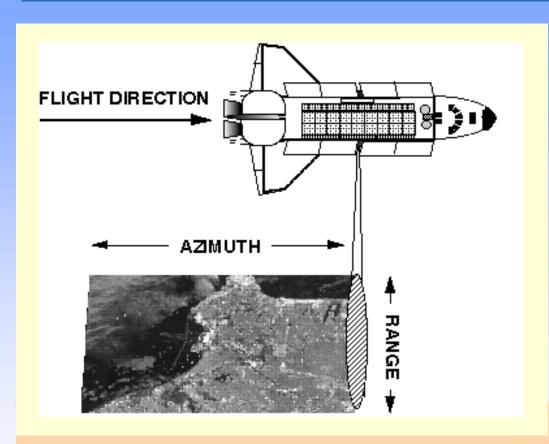
GPM CONCEPT

- Getting precipitation data from an ensemble of satellite microwave sensors, both passive and active, has recently renovated the issue of using Synthetic Aperture Radars at X band (X-SARs).
 - The SAR frequency at **X band** (9.6 GHz) is not too far from **Ku band** (14 GHz) and rainfall signatures have been already revealed by previous X-SARs measurements (e.g. SAR-X SIR-C in 1994).
 - The high spatial resolution (~100 m) of SAR sensors might provide new insights into the structure of precipitating clouds form space.
 - Unlike the **Precipitation Radar**, which provides highly resolved vertical precipitation profiles, SAR measure the slant-path integrated scattering and attenuation of precipitation.
 - Near-future SAR satellites will also measure the co-polar and cross-polar polarized backscattering, produced by precipitation along the slant path

SCIENTIFIC BENEFITS

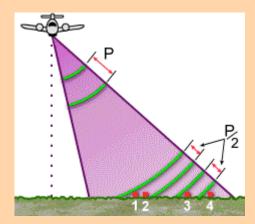

- The measurement of highly-resolved precipitation over land where microwave radiometers have had limited success.
 - X-SAR precipitation retrievals will be especially valuable over mountainous terrain (where ground based radars are obstructed), but also over ocean with different problems to be solved.
- Contribution to **GPM constellation resources**

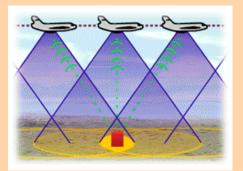
INTERNATIONAL CONTEXT


- The use of X-SAR data in the near future can take advantage of the satellite missions already planned by some European space agencies.
 - The TerraSAR-X (TSX) will be launched by the Deutsches Zentrum f. Luft u. Raumfahrt (DLR) in 2007
 - the Constellation of 4+2 Small
 Satellites for Mediterranean basin
 Observations (COSMO-SkyMed) will
 be launched by the Agenzia Spaziale
 Italiana (ASI) in 2007-08
 - X-band + hyperspectral camera on 2 other satellites
 - Stripmap mode (res.: 3-15 m, scene: 40x40 km²)
 - Multi-polarimetric mode (HH, VV, HV select, res.: 15 m, scene: 30x30 km²)
 - ScanSAR mode (res.: 30-100 m, scene: 200x200 km²)

COSMO SkyMed satellite system

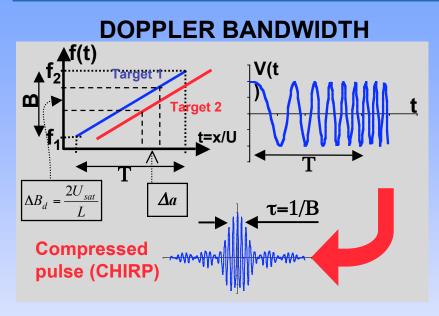
SAR PROCESSING AND GEOMETRY

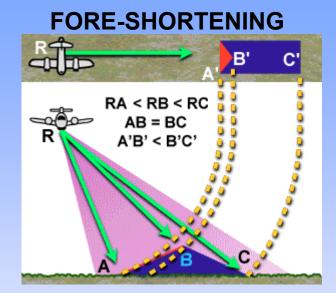

Azimuth resolution (along-track) ⇒ synthetic aperture lenght or Doppler beam sharpening

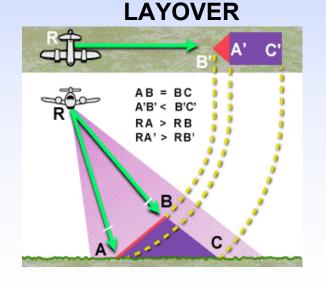

$$\Delta a = N_{look} \cdot L_{ant}/2$$

Ground range resolution (cross-track)

⇒ Chirp bandwidth B and off-nadir angle θ

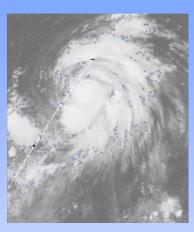

$$\Delta x = [c/2B]/\sin\theta$$





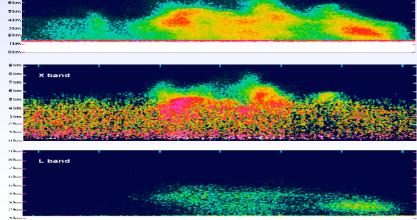
SOME ISSUES ON SAR DATA PROCESSING

LOCAL INCIDENCE Brighter smaller local incidence angle Darker larger local incidence angle

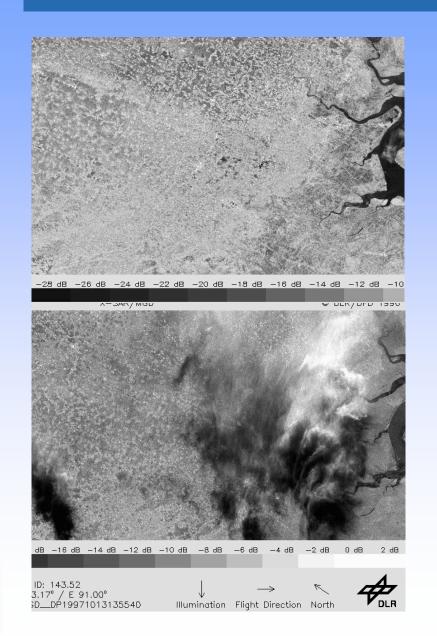

EVIDENCES FROM SIR-C SAR MISSION

SIR-C radar aboard the space shuttle Endeavour

- over the Western Pacific (orbit number 103), data take requests coincided with the passage of Endeavour over and across Typhoon Seth on Oct. 6, 1994
- The SIR-C radar antenna beams were perpendicular to the Earth and data takes were executed with the correct radar operating parameters.


First radar images of rainfall from space radars!!!

The 3 panels show vertical sections (through the atmosphère) of the radar reflectivities measured over a convective cell during the beginning of data take 103.0, at C-, X- and L-bands (VV polarization). The X-band signal shows some residual contamination by the echo from the surface


DT 103.0 (GMS IR. 6 Oct 94, 1732Z)

CASE STUDY FROM X-SAR SIR-C MISSION

DLR X-SAR aboard Endeavor Shuttle Mission

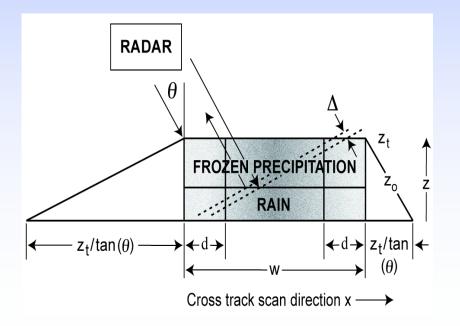
_ Swath width: 100 km _ Resolution: 300 m _ Polarization: VV

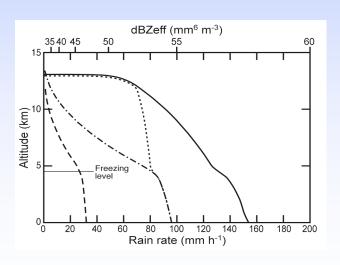
(Upper Panel) View of Calcutta (22.8° N x 91.2° E) on 7 October, 1994

(Lower Panel) Same scene on 18 April, 1994.

NOTES

- possible scattering by frozen hydrometeors in the upper right, scattering and attenuation by rain in middle-lower right, and possible absorption by rain only in the lower left. - the maximum Normalized Radar Cross Section (NRCS) of the scattered signal is ~ -3 dB and the minimum NRCS value in the shaded area is ~ -30 dB.

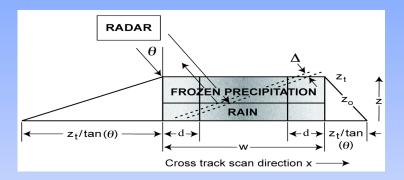

MODELING SAR RESPONSE


Assumptions

- Plane-wave incidence (avoid spherical wave front corrections)
- Frozen atmosphere (avoid Doppler broadening due to hydrometeors)
- 2-D geometry stratified along cross-track (x-z) view with non-uniform profiles
- Factorization of the x (cross-track) and z (vertical) precipitation profile
- Liquid (rain) and ice (graupel) hydrometeor profiles

Objective

- Compute the **Normalized Radar Cross Section** (NCRS or σ_{SAR})



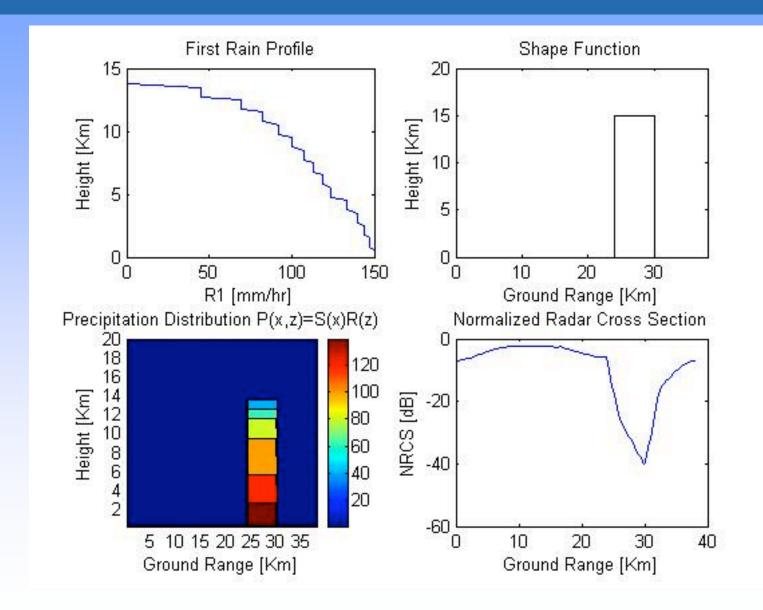
SAR RESPONSE DUE TO RAINFALL

Scattering mechanisms

- Surface back-scattering
- Volume back-scattering
- Slant geometry view
- Attenuation (k) model at X band
- Reflectivity (η) model at X band
- Surface NCRS: 7 dB

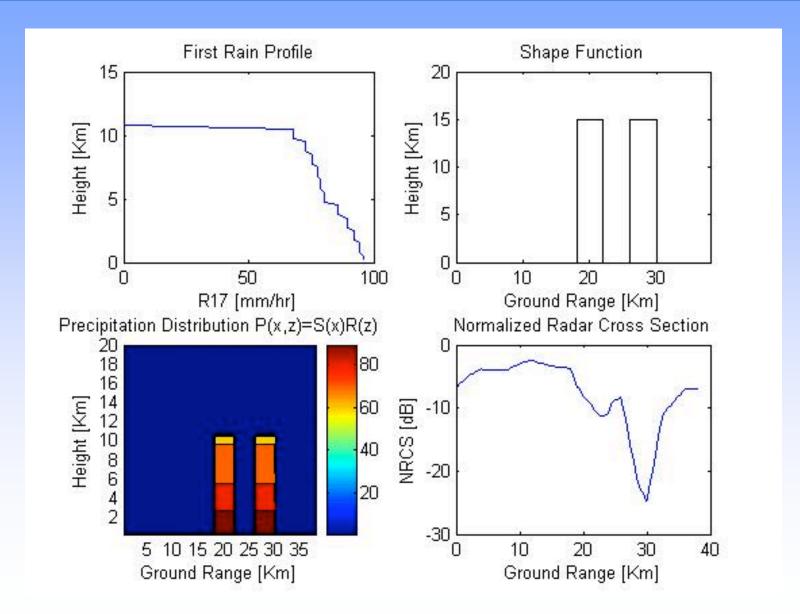
$$\sigma_{SAR}(x) = \sigma_{srf}(x) + \sigma_{vol}(x)$$

$$\sigma_{srf}(x) = \sigma^{0}(x)e^{-2\int_{0}^{\infty} k[x(z)] \frac{dz}{\sin \theta}}$$


$$\sigma_{vol}(x) = \int_{0}^{\infty} \eta \left[x(z) \right]^{-2 \int_{z}^{\infty} k \left[x'(z') \right] \frac{dz'}{\sin \theta}} dz$$

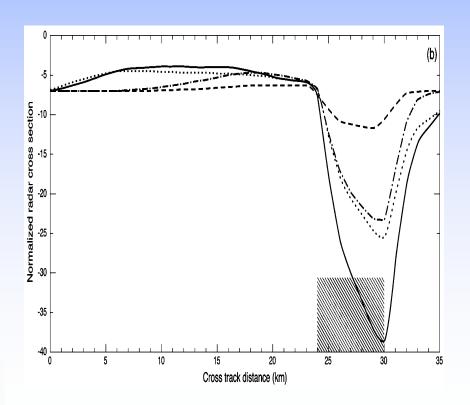
Surface effects

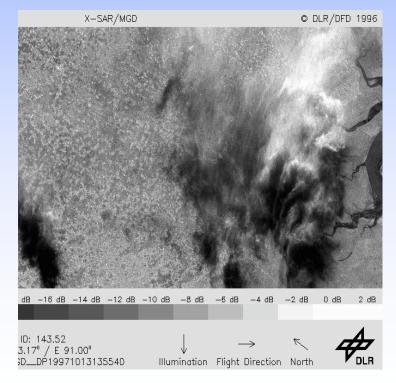
Volume effects



EXAMPLES OF MODELED SAR RESPONSE

EXAMPLES OF MODELED SAR RESPONSE





FEATURES OF SAR RESPONSE TO RAIN

SAR response features

- Ice hydrometeors tend to enhance backscattering
- Liquid hydrometeors tend to attenuate NCRS
- Dependence on the precipitation horizontal-vertical shape
- Slant view geometric effects

RAIN RETRIEVAL FROM SAR DATA

METHODOLOGY

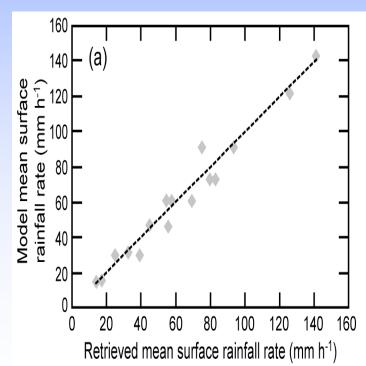
- Recognize the precipitation spatial shape
- Identify main features of SAR NCRS response
 - Zero-crossing NCRS nodes
 - Shape moments and stationarity points
- Separate rain from ice hydrometeors
- Exploit correlation along vertical precipitation profile V(z)

$$< V_{rain}(z) > = \frac{< V(z) > w}{\int_{0}^{\hat{w}} H(x) dx}$$
 $V_{snow}(z) = \frac{< R(x, z) >}{\int_{0}^{w} H(x) dx} = V_{rain}(z_0) \left(\frac{z_t - z}{z_t - z_0}\right)^p$

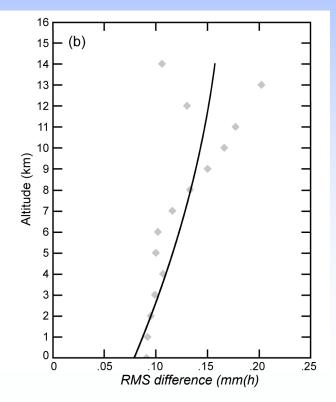
PROTOTYPE RETRIEVAL OF RAIN AND SNOW

$$<\hat{V}_{rain}(0)> = 23.30 + 1.13 \int_{\hat{x}_{0}}^{\hat{x}_{max}} \left[dB\sigma^{0}(x_{max}) - dB\sigma_{SAR}(x) \right] dx - 21.62 \int_{0}^{\hat{x}_{0}} \left[\sigma_{SAR}(x) - \sigma^{0}(0) \right] dx - 2.58 \hat{w}$$

$$<\hat{V}_{snow}(z)> = \frac{183 \left(\int_{0}^{x_{0}} \left[\sigma_{SAR}(x) - \sigma_{SAR}(0) \right] dx \right)^{0.94}}{\hat{x}_{0}}$$



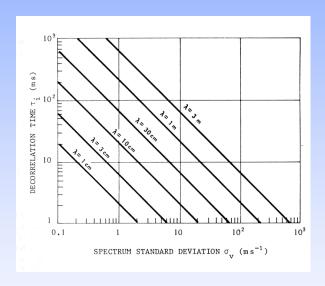
RAIN RETRIEVALS FROM SAR DATA


Simulated 2-D scenario

- Rectangular, triangular and double-column shapes
- Modeled vertical profiles
- No noise on NCRS response and surface NCRS

Surface mean rain-rate

Mean precipitation profile



F.S. Marzano, J. Weinman e A. Mugnai

ISSUES ON X-SAR RAINFALL RETRIEVAL

Azimuth (along-track) resolution

- Nominally, $\Delta a = L/2$ for a fixed target
 - But, precipitation has an inherent Doppler spectrum

•Snow:
$$\sigma_v = 0.5 \text{ m/s}$$

•Rain: $\sigma_v = 1 \text{ m/s}$ $\sigma_{f_d} = (2/\lambda)\sigma_v$

Doppler analysis of random target

$$\Delta a = \sigma_v(2R/U_{sat})$$

Cosmo Sky-Med ScanSAR

Nominal Δa : 30 m

Degraded by rain effect: ~300 m

Rain-rate estimation sensitivity

- Depending on Signal-to-Noise ratio and receiver noise $S/N \propto aR^b$
- − For standard relations at single-pulse X-SAR: $R_{\text{min}} \approx 0.1 \ mm/h$
 - Improvements: incoherent integration of SAR pulses
 - Criticality: beam filling effects

CONCLUSIONS

- SAR are not nor microwave radiometers neither weather radars, but ...
 - SAR response looks very similar to MW radiometers
 - Dependence on precipitation integrated effects
 - No range resolution
 - Use of slant view as probing instead of multifrequency radiometers
 - SAR retrieval techniques
 have some in common with

 Precipitation Radar
 - Surface backscattering reference meyhods to evaluate Path Attenuation
 - High spatial resolution (even higher than current PR and DPR!)

RainSAR?!

